Halogenation through Deoxygenation of Alcohols and Aldehydes

Jia Chen, Jin-Hong Lin, and Ji-Chang Xiao

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

Supporting Information

ABSTRACT: An efficient reagent system, Ph₃P/XCH₂CH₂X (X = Cl, Br, or I), was very effective for the deoxygenative halogenation (including fluorination) of alcohols (including tertiary alcohols) and aldehydes. The easily available 1,2-dihaloethanes were used as key reagents and halogen sources. The use of (EtO)₃P instead of Ph₃P could also realize deoxy-halogenation, allowing for a convenient purification process, as the byproduct (EtO)₃P=O could be removed by aqueous washing. The mild reaction conditions, wide substrate scope, and wide availability of 1,2-dihaloethanes make this protocol attractive for the synthesis of halogenated compounds.

Traditionally, deoxygenative methodologies for halogenation approaches require the use of highly acidic agents such as hydrogen halides (HX), phosphorus halides (PX₅, POX₃, PX₃), and sulfur halides (SOₓ₂, SOₓ, SOₓ₃) (Figure 1, eq 1). The mild reaction conditions, wide substrate scope, and wide availability of 1,2-dihaloethanes make this protocol attractive for the synthesis of halogenated compounds.

Not naturally occurring organohalogenated molecules are being continuously discovered. Over 4700 molecules are now known, including 30 fluorinated, 2300 chlorinated, 2100 brominated, and 120 iodinated molecules. Organohalogenated compounds are highly valuable intermediates in organic synthesis and are of increasing importance in pharmaceuticals, agrochemicals, and functional materials. Therefore, significant efforts have been directed toward the development of mild approaches for halogen incorporation. A variety of efficient halogenation strategies have been devised, such as radical, electrophilic, nucleophilic, and decarboxylative halogenation. Because alcohols and aldehydes are inexpensive and easily available materials, their deoxygenation and subsequent nucleophilic halogenation is apparently one of the most straightforward strategies for the incorporation of halogen atoms. However, efficient protocols for deoxygenative halogenation (including fluorination) are rather scarce.

Traditional deoxy-halogenation methods require the use of highly acidic agents such as hydrogen halides (HX), phosphorus halides (PX₅, POX₃, PX₃), and sulfur halides (SOₓ₂, SOₓ, SOₓ₃) (Figure 1, eq 1). These acidic agents are corrosive or moisture sensitive, and may lead to rearrangement or dehydoration of alcohols. The Appel reaction, deoxy-halogenation of alcohols and aldehydes promoted by a trivalent phosphorus compound and an electrophilic halogen-containing agent, has proven to be one of the most successful strategies for halogen incorporation (Figure 1, eq 2). However, the commonly used electrophilic halogen-containing agents, including tetrahalomethanes, molecular halogens, and N-halo compounds, are highly toxic or may result in low functional group tolerance, owing to their high reactivity. Furthermore, Wittig-type dihalomethylation products can sometimes be obtained as side products during the conversion of aldehydes.

Recently, Denton reported an efficient method for a catalytic Appel reaction, in which a wide substrate scope was demonstrated. To date, the Appel reaction conditions have been applied well for the halogenation of primary and secondary alcohols, but not for tertiary alcohols. Although many deoxy-halogenation approaches have been developed, a mild and general protocol that can be applied not only to deoxy-chlorination, -bromination, and -iodination, but also to deoxy-fluorination has not been developed. Usually, hazardous agents such as sulfur tetrafluoride (SF₄) or diethylaminozulfur trifluoride (DAST) have to be employed for deoxy-fluorination. Recently, we found that a new reagent system, Ph₃P/XCH₂CH₂X/ Bu₄NI (X = Cl, Br, or I), can be used for efficient and convenient halogenation reactions including fluorination (Figure 1, eq 3).

Our interest in phosphonium chemistry led us to discover that tetraarylpophosphonium salts (Ph₃P⁺−Ar⁻) can be applied to the nucleophilic arylation of aldehydes in the presence of cesium carbonate (Figure 2, eq 1). Here, the tetraarylpophosphonium salts were prepared in advance from aryl iodide and triphenylphosphine. Therefore, our initial attempt was to combine this two-step reaction into a one-pot process, i.e., to perform the arylation directly with aryl iodide, triphenylphosphine, and aldehyde (Figure 2, eq 2). Although various reaction conditions were screened, the expected arylation product (2a) was not obtained. Unexpectedly, a dichlorinated product (2a)

Received: April 8, 2018

DOI: 10.1021/acs.orglett.8b01058
Org. Lett. XXXX, XXX, XXX−XXX

Figure 1. Halogenation through deoxygenation of alcohols and aldehydes.
was obtained when 1,2-dichloroethane was used as the reaction solvent. The observation of product 2a prompted us to screen the optimal reaction conditions for the unexpected deoxychlorination of aldehydes. A detailed survey of the conditions revealed the reaction with ClCH₂CH₂Cl as the chlorination agent and reaction solvent proceeded smoothly to give the desired product in a high yield in the presence of a slight excess of Ph₃P and nBu₄NI (see Supporting Information (SI)). With the optimized reaction conditions in hand, we investigated the substrate scope for deoxy-halogenation of other carbonyls (Scheme 1). For deoxy-chlorination of aldehydes (2a–2m), electron-rich, neutral, and deficient aryl aldehydes were all converted smoothly into the desired products (2a–2l). Although a high conversion yield was obtained for the conversion of a substrate containing a strong electron-donating substituent, the desired product could not be isolated, owing to its instability (2g). Besides aryl aldehydes, an alkyl aldehyde was also transformed well (2m). Gratifyingly, the replacement of ClCH₂CH₂Cl with BrCH₂CH₂Br resulted in the deoxy-bromination of aldehydes (3a–3e). This deoxy-bromination reaction could be applied to both aryl- and alkyl-aldehydes. The deoxy-iodination of aldehydes was not fully investigated, as the desired products were highly unstable. For deoxy-chlorination of ketones such as 4‘-nitroacetophenone, a dichlorinated product (ArCCl₂CH₃) was obtained as a minor product. Instead, a chlorinated olefin (ArCHClCH=CH₂) was observed as the major product.

The successful deoxy-halogenation of carbonyls encouraged us to examine the dehydroxy-halogenation of alcohols. After determining the optimal reaction conditions (see SI), we investigated the substrate scope for dehydroxy-chlorination, -bromination, and -iodination of alcohols (Scheme 2). The use of ClCH₂CH₂Cl as the chlorination agent and the reaction solvent also gave the desired chlorination products in moderate to high yields in the presence of Ph₃P and nBu₄NI (5a–5n). In contrast to deoxy-chlorination of aldehydes, dehydroxy-chlorination of alcohols occurred much faster (0.5 h versus 10 h), albeit at a higher reaction temperature (120 °C versus 80 °C). Various benzyl alcohols (5a–5i) and alkyl alcohols (5j–5n) were all suitable for this transformation. Compared with primary alcohols (5a–5l), a secondary alcohol (5m) and tertiary alcohol (5n) were converted into the desired products in slightly lower yields. Dehydroxy-bromination of alcohols by using BrCH₂CH₂Br instead of ClCH₂CH₂Cl also occurred very well at a lower temperature (6a–6k). A tertiary product (6k) could also be obtained in moderate yields. The use of DMF or CH₃CN as the reaction solvent allowed for the successful conversion of ClCH₂CH₂Cl as the chlorination agent and the reaction solvent also gave the desired chlorination products in moderate to high yields in the presence of Ph₃P and nBu₄NI (5a–5n).
iodination prompted us to speculate on the possibility of the chlorination and bromination, the iodination proceeded smoothly without the presence of owing to the stronger C−I bond. The successful iodination prompted us to speculate on the possibility of the challenging dehydroxy-iodination of an alcohol when an external fluoride ion is added to the Ph3P/ICH2CH2I system. To our delight, a brief survey of the reaction conditions (see SI) revealed that dehydroxy-iodination could proceed well when CsF was used as the fluoride source. With the optimal reaction conditions in hand, we examined the substrate scope of the dehydroxy-iodination of alcohols (Scheme 3). Benzyl alcohols were quite reactive, and the yields were not affected by the electronic effects of substituents (8a−8i). Besides benzyl alcohols, unactivated alcohols could also be smoothly converted into the desired products (8j−8k). Secondary alcohols displayed low reactivity under the optimal conditions. Fortunately, a moderate yield could be obtained by using AgF instead of CsF (8l). The high volatility of product 8l led to a decrease in the isolated yield (57%) compared with the yield determined by 19F NMR spectroscopy.

Scheme 3. Dehydroxy-iodination of Alcohols

![Scheme 3](https://example.com/scheme3.png)

“Reaction conditions: alcohol 4 (0.5 mmol), Ph3P (1.5 equiv), ICH2CH2I (1.5 equiv), and CsF (3 equiv) in DMF (5 mL) at 100 °C for 2 h. The yields were isolated yields.

However, a 72 h reaction time was required. Furthermore, owing to the slow chlorination process when using a catalytic amount of iodide, the quaternization of Ph3P with CICH2CH2Cl occurred as a side reaction, resulting in a lower yield (62% versus 96%, as shown in Scheme 1). Therefore, a stoichiometric amount of Bu4NI was employed to facilitate the dehydroxy-chlorination and -bromination reaction.

For the dehydroxy-iodination, -chlorination, and -bromination reactions, no iodination product was observed even though an iodide anion was present. The question arose whether these products were formed from the substitution of an iodinated intermediate. If this is the dominant path, retention of configuration may be observed, owing to the double inversion. However, the transformation of enantiopure S-4m under the optimal reaction conditions led to the inversion of configuration (Figure 5). The inversion not only indicated that iodination to give product 7e followed by substitution was not the

Figure 3. Proposed mechanism for deoxy-halogenation of aldehydes and alcohols.

![Figure 3](https://example.com/figure3.png)

Figure 4. Dehydroxy-chlorination in the presence of a catalytic amount of Bu4NI.

![Figure 4](https://example.com/figure4.png)

Figure 5. Inversion of configuration.
Ph₃P, (EtO)₃P was almost completely converted into an oxide, (EtO)₃P=O, which could be easily removed by washing with water, leading to a more convenient purification process for large-scale reaction.

In conclusion, we have described the dehydroxy-fluorination, -chlorination, -bromination, and -iodination of alcohols, and the deoxy-chlorination and -bromination of aldehydes with an R₃P/XCH₂CH₂X (X = Cl, Br, or I) system. This work represents the first protocol for a variety of efficient deoxygenerative halogenation reactions, including challenging dehydroxy-fluorination. The wide substrate scope and the availability of 1,2-deoxy-chlorination and -bromination of aldehydes with an R₃P/-chlorination, -bromination, and -iodination of alcohols, and the large-scale reaction.

REFERENCES